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Marc Lachièze-Rey1 and Jeffrey Weeks2

1 Astroparticule et Cosmologie (APC), CNRS-UMR 7164, France
2 15 Farmer Street, Canton, New York, USA

Received 23 January 2008, in final form 29 May 2008
Published 27 June 2008
Online at stacks.iop.org/JPhysA/41/295209

Abstract
We provide a new construction of the modes of the Poincaré dodecahedral space
S3/I ∗. The construction uses the Hopf map, Maxwell’s multipole vectors and
orbifolds. In particular, the *235-orbifold serves as a parameter space for the
modes of S3/I ∗, shedding new light on the geometrical significance of the
dimension of each space of k-modes, as well as on the modes themselves.
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(Some figures in this article are in colour only in the electronic version)

1. Introduction

Cosmic topology [4] considers big bang models where space is multiconnected, rather than
simply connected like in their standard counterparts. Such multiconnected models (MCMs)
have been compared to the large scale structures like the distributions of galaxies or clusters
but such tests have apparently reached their limits given the present status of the large scale
surveys. On the other hand, many recent works have examined the possible signature of
MCMs in the characteristics of the cosmic microwave background (CMB). For example,
the Poincaré dodecahedral space (PDS) provided a concrete model that naturally explained
the weak broad-scale CMB fluctuations ([9, 20]; see also [23, 24]) while maintaining good
agreement with the curvature estimates favored at the time [18]. Other models have also been
invoked [1].

Estimating the characteristics of CMB fluctuations, in a given model, requires the
knowledge of the eigenmodes of the Laplacian on the spatial sections. In the usual (simply
connected) big bang models, such sections are copies of M = S3, R

3 or H 3, according to the
spatial curvature, and their eigenmodes are well known analytically. In MCMs, the spatial
sections are multiconnected spaces.

In the positive curvature case, the most cosmologically relevant examples take the form
S3/�∗, the quotients of S3 by a binary polyhedral group �∗. Their eigenmodes are not known
in general. Thus, the first estimates of the statistics of the CMB fluctuations in MCMs

1751-8113/08/295209+16$30.00 © 2008 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/41/29/295209
http://stacks.iop.org/JPhysA/41/295209


J. Phys. A: Math. Theor. 41 (2008) 295209 M Lachiéze-Rey and J Weeks

[20] used numerical estimates. Those can be performed only for the first eigenmodes, thus
limiting the validity of the possible comparisons with observations. This motivated the search
for analytical expressions of the eigenmodes of the spherical spaces. Such modes may be
seen as the �∗-invariant solutions of the Helmholtz equation in the universal cover S3. Their
numeration and degeneracy were given by Ikeda [5]. Recent works [6–8, 10, 11] have provided
various means to calculate them, which were used in [9] to compare the CMB data with the
MCM predictions.

Since these constructions of the eigenmodes of S3/�∗ are based on group theoretical
arguments, they naturally involve the Wigner D-functions Tk;m1,m2 . As a consequence, the
result of the calculations, i.e., the desired eigenmodes, is given by their expansion with respect
to the Wigner functions, which provide a basis for the eigenmodes of S3, rather than with
respect to the more usual hyperspherical harmonicsYk�m. This has no fundamental importance,
but for historical and for practical reasons the CMB fluctuations are expanded in the usual
spherical harmonics Y�m of the celestial sphere S2. It is rather natural and easy to calculate the
coefficients of the CMB fluctuations in their Y�m expansion from the spatial modes expressed
in their Yk�m expansion. On the other hand, the same calculation from the spatial modes in
their Tk;m1,m2 expansion is much more tedious: it requires a conversion from the Tk;m1,m2 basis
to the Yk�m basis. This simple change of basis presents no fundamental difficulty, but involves
the calculation of families of Clebsch–Gordan coefficients which requires large amounts of
computer time and memory. This put limits on the practical validity of the calculations.
Thus, although the problem is formally solved, practical considerations motivate the search
for alternative methods.

It has been recognized in recent years [13, 14, 16, 17, 19, 21, 25] that the eigenmodes
of S2, and their statistics, can be expressed as multipole harmonics rather than through their
Y�m expansion. Various algorithms have already been developed for analyzing the CMB data
in this formalism, and it has been recognized that it may offer some advantages to express
deviations from isotropy, precisely the kind of effects expected in MCMs (see, e.g., [2]).
Thus it seems very promising to analyze the CMB fluctuations predicted from MCMs in the
multipole formalism rather than with the familiar Y�m expansion. A first analysis has been
accomplished recently by [3], who point out however the absence of predictions from the
MCMs, i.e., an expression of the predicted CMB fluctuations in the multipole formalism. The
work presented here offers a first step in this direction: instead of calculating the eigenmodes
of a spherical space (including S3 itself) in their Yk�m or Tk;m1,m2 expression, we construct
them directly from some selected S2 multipole eigenmodes. More precisely, we show that the
eigenmodes of S3/�∗ are ‘lifts’ of the �-invariant multipole eigenmodes of S2.

Our construction involves a new point of view. It uses the Hopf map S3 → S2, the
multipole eigenmodes, and orbifolds. Providing a direct link between the spatial eigenmodes
and the multipole vectors of S2, it opens the possibility of obtaining a direct estimate of the
CMB fluctuations as multipole harmonics, from our expression of the spatial eigenmodes in
a MCM, without requiring calculation-intensive intermediate steps. Beside the possibility
of extending the validity of the previous tests (which becomes necessary with the increased
precision of the CMB data), this could permit the implementation of tests of a different nature,
because of the distinct discriminative power of the multipole analysis compared to the familiar
Y�m expansion of the CMB fluctuations (see [2, 15, 22]). In particular, the already existing
analyses of the CMB data in the multipole formalism could be used as new constraints (or
confirmations) for the MCMs; in particular, regarding the characteristic anisotropies predicted
by the MCMs, a task presently out of reach with the usual spherical harmonics formalism.

Section 2 reviews the Hopf map and uses it to lift eigenmodes from S2 to S3. Section 3
uses twist operators to extend the lifted modes to a full eigenbasis for S3. Section 4 generalizes
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the preceding results from the modes of S3 to the modes of a spherical space S3/�∗, showing
that the latter all come from the lifts of those eigenmodes of S2 that are invariant under the
corresponding (non-binary) polyhedral group �. We then turn to a detailed study of the
�-invariant modes of S2. Section 5 recalls Maxwell’s multipole vector approach and uses it
to associate each mode of S2/� with a �-invariant set of multipole directions. Restricting
attention to the case that � is the icosahedral group, section 6 introduces the concept of an
orbifold and re-interprets a �-invariant set of multipole directions as a (much smaller) set of
points in the *235-orbifold, which serves as the parameter space. Section 7 pulls together
the results of the preceding sections to summarize the construction of the modes of the
PDS and state the dimension of the mode space for each k. This construction provides a new
demonstration of Ikeda’s formula [5] and sheds additional light on its geometrical significance.

2. From S2 to S3: lifting with the Hopf map

2.1. Spheres

We parameterize the circle S1 as the set of points α ∈ C of unit norm αᾱ = 1. The relationship
between the complex coordinate α and the usual Cartesian coordinates (x, y) is the natural
one: α = x + iy.

We parameterize the 2-sphere S2 as the set of points (x, y, z) ∈ R
3 of unit norm

x2 + y2 + z2 = 1.
We parameterize the 3-sphere S3 as the unit sphere in C

2: the set of points (α, β) ∈ C
2

of unit norm αᾱ + ββ̄ = 1. Hereafter, we will always assume that this normalization relation
holds. The relationship between the complex coordinates (α, β) and the usual Cartesian
coordinates (x, y, z,w) is the natural one: α = x + iy and β = z + iw.

2.2. The Hopf fibration

In S3, simultaneous rotation in the α- and β-planes defines the Hopf flow Ht : S3 → S3,

Ht(α, β) ≡ (eitα, eit β). (1)

The Hopf flow is homogeneous in the sense that it looks the same at all points. An orbit

{(eitα, eit β) | 0 � t < 2π} (2)

is a great circle on S3 called a Clifford parallel (figure 1). Collectively, the Clifford parallels
comprise the Hopf fibration of S3. The fibers carry Clifford’s name because William Kingdon
Clifford (1845–1879) discovered them before Heinz Hopf (1894–1971) was born. However,
while Clifford understood the fibration quite well, he did not, as far as we know, go on to
consider the quotient map (equation (3)).

As we walk along any given Clifford parallel (eitα, eit β), the ratio of its coordinates eit α
eit β

remains a constant α
β

, independent of t. The ratio α
β

labels uniquely each Clifford parallel,
taking values in the extended complex numbers C ∪ {∞}, where ∞ represents the ratio
α
β

= 1
0 . The extended complex numbers may be visualized as a Riemann sphere, proving

that the Clifford parallels are in one-to-one correspondence with the points of a topological
2-sphere S.

The Hopf map is defined as sending any point (α, β) of S3 to the fiber its belong to, i.e.,
the point of S labeled by α

β
. Composing with a natural map from S to the unit 2-sphere S2

gives an explicit formula for the Hopf map,

p : S3 → S2(α, β) → p(α, β) = (x, y, z) = (αβ̄ + ᾱβ,−i(αβ̄ − ᾱβ), ββ̄ − αᾱ). (3)

3
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Figure 1. A computer generated view of the Clifford parallels in S3.

It is easy to check that x2 + y2 + z2 = 1, confirming that the Hopf map p sends S3 to the unit
2-sphere.

2.3. Lifts of functions

Any given function f on S2 lifts to a function F on S3 by composition with the Hopf map p
from equation (3),

F : S3 p→ S2 f→ R. (4)

In other words, F = p∗f is the pull-back of f by p: explicitly,

F(α, β) ≡ f (p(α, β)) = f (αβ̄ + ᾱβ,−i(αβ̄ − ᾱβ), ββ̄ − αᾱ). (5)

For example, the quadratic polynomial

f (x, y, z) = x2 − y2 (6)

lifts to the quartic polynomial

F(α, β) = (αβ̄ + ᾱβ)2 − (−i(αβ̄ − ᾱβ))2 = 2(α2β̄2 + ᾱ2β2). (7)

Definition 2.3.1. We call a function F : S3 → R vertical if it is constant along every Clifford
parallel (formula (2)).

For every function f : S2 → R, the construction of the lift F(α, β) = f (p(α, β))

guarantees that F is vertical.

Proposition 2.3.2. The Hopf map lifts a polynomial f : S2 → R of degree � to a polynomial
F : S3 → R of degree 2�.

Proof. The lifting formula (5) doubles the degree of any polynomial. �

4
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3. Eigenmodes

3.1. Basic definitions

Definition 3.1.1. An �-eigenmode is an eigenmode f : S2 → R of the Laplacian, with
eigenvalue λ� = �(� + 1).

An �-eigenmode is a solution of the Helmholtz equation

�S2f = �(� + 1)f. (8)

The index � takes values in the set {0, 1, 2, . . .}. For each �, the �-eigenmodes (which are the
usual spherical harmonics) form a vector space V � of dimension 2� + 1.

Definition 3.1.2. A k-eigenmode is an eigenmode F : S3 → R of the Laplacian with
eigenvalue λk = k(k + 2).

A k-eigenmode is a solution of the Helmholtz equation

�S3F = k(k + 2)F. (9)

The index k takes values in the set {0, 1, 2, . . .}. For each k, the k-eigenmodes form a vector
space V k of dimension (k + 1)2.

3.2. Eigenmodes of S2 define eigenmodes of S3

Proposition 3.2.1. An �-eigenmode f on the unit 2-sphere lifts to a k-eigenmode F on the unit
3-sphere, with k = 2�.

Proof. It is well known that the �-eigenmodes are precisely the homogenous harmonic
polynomials of degree � on R

3, with domain restricted to the unit 2-sphere. Similarly the
k-eigenmodes are the homogeneous harmonic polynomials of degree k on R

4, with domain
restricted to the unit 3-sphere. A harmonic function on R

4 satisfies

�R4F ≡ 4(∂α∂ᾱ + ∂β∂β̄)F = 0. (10)

When F is the pull-back of f given by (5), direct calculations give

�R4F(α, β) = (∂x∂x + ∂y∂y + ∂z∂z)f (x, y, z) = �R3f (x, y, z). (11)

Thus, the pull-back of a harmonic function on R
3 is a harmonic function on R

4, and therefore
the pull-back of an eigenmode of �S2 is an eigenmode of �S3 . Together with proposition 2.3.2,
this completes the proof. �

Notation 3.2.2. Let Y�m denote the usual spherical harmonics on S2. For example, the Y2,m

may be expressed as harmonic polynomials as follows:

Trigonometric Polynomial

Y2,+2

√
15

32π
sin2 θe2rmiϕ

√
15

32π
(x + iy)2

Y2,+1

√
15
8π

cos θ sin θeiϕ
√

15
8π

z(x + iy)

Y2,0

√
5

16π
(1 − 3 cos2 θ)

√
5

16π
(x2 + y2 − 2z2)

Y2,−1

√
15
8π

cos θ sin θe−iϕ
√

15
8π

z(x − iy)

Y2,−2

√
15

32π
sin2 θe−2iϕ

√
15

32π
(x − iy)2
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Let Ykm0 = Y�m ◦ p, with k = 2�, denote the pullback of Y�m under the action of
the Hopf map (3). In accordance with proposition 2.3.2, its degree is k. For example,

Y2,0 =
√

5
16π

(x2 + y2 − 2z2) lifts to Y4,0,0 =
√

5
4π

(α2ᾱ2 − 4αᾱββ̄ + β2β̄2) of degree 4.
The Ykm0 are simply the realization of the Y�m on the abstract 2-sphere S of Clifford

parallels. As such, the linear independence of the Y�m immediately implies the linear
independence of the Ykm0 as well.

3.3. Twist

Each Ykm0 is constant along Clifford parallels, but more general functions are not. As we
take one trip around a Clifford parallel (eitα0, eit β0), 0 � t � 2π , the value of the monomial
αaᾱbβcβ̄d varies as ei(a−b+c−d) times the constant αa

0 ᾱb
0β

c
0 β̄

d
0 . In other words, the value of a

typical monomial αaᾱbβcβ̄d rotates counterclockwise(a − b + c − d) times in the complex
plane as we take one trip around any Clifford parallel. The graph of the monomial is a helix
sitting over the Clifford parallel, motivating the following definition.

Definition 3.3.1. The twist of a monomial αaᾱbβcβ̄d is the power of the unbarred variables
minus the power of the barred variables, i.e. a − b + c − d. The twist of a polynomial is the
common twist of its terms, in cases where those twists all agree; otherwise it is undefined.

Proposition 3.3.2. The polynomials of well-defined twist (including all monomials) are
precisely the eigenmodes of the operator

α∂α − ᾱ∂ᾱ + β∂β − β̄∂β̄ , (12)

with the twist as eigenvalue.

Proof. Apply the operator to αaᾱbβcβ̄d and observe the result. �

Geometrically, operator (12) is essentially the directional derivative operator in the
direction of the Clifford parallels, the only difference being that the directional derivative
includes a factor of i that operator (12) does not, because the complex-valued derivative is 90◦

out of phase with the value of the function itself.
Because we consider modes of even k only, the twist will always be even. Henceforth,

for notational convenience, we shall take our twist-measuring operator to be

Z = 1
2 (α∂α − ᾱ∂ᾱ + β∂β − β̄∂β̄). (13)

The ad hoc factor of 1/2 transforms the range of eigenmodes from even integers to all integers.

3.4. Siblings and the twist operators

The twist operators

twist ≡ −β∂ᾱ + α∂β̄ twist ≡ −β̄∂α + ᾱ∂β (14)

(defined in [12]) increase and decrease a function’s twist. That is, the twist operator converts
an n-eigenmode of Z to an (n + 1)-eigenmode of Z, and inversely for twist. Here is the proof:
it is easy to check that the commutator [Z, twist] = twist, so given ZF = λF it follows that

Z(twist F) = (Ztwist)F = (twist Z + twist)F = (λ + 1)(twist F).

Thus the operator twist increases by one unit the eigenvalue of an eigenfunction of Z, and
similarly twist decreases it by one unit.

6
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Because �S3 and twist commute (see [12]), the twist operator transforms each k-
eigenmode into another k-eigenmode.

Being vertical, each Ykm0 is an eigenmode of Z with eigenvalue 0. Repeatedly applying
the operator twist gives eigenmodes of Z with eigenvalues 1, 2, . . . , k/2 (k is even), while
repeatedly applying the operator twist gives modes with eigenvalues −1,−2, . . . ,−k/2.
Why do the sequences stop at n = ±k/2? The explanation is as follows. When written as
a polynomial in the complex variables {α, ᾱ, β, β̄}, the original vertical mode Ykm0 contains
equal powers of the barred variables ᾱ and β̄ and the unbarred variables α and β. The
operator twist replaces a barred variable with an unbarred one, keeping the degree constant
while increasing the difference #unbarred − #barred by two. After k

2 applications of the
twist operator, the polynomial twistk/2Ykm0 contains unbarred variables alone: it has maximal
positive twist and further application of the twist operator collapses it to zero. Analogously,
the twist operator converts unbarred variables to barred ones, until twist k/2Ykm0 consists of
barred variables alone, after which further applications of twist collapse it to zero.

Let Ykmn be the resulting modes. That is, for n = 1, 2, . . . , k/2, define

Yk,m,+n = twistnYkm0 Yk,m,−n = twistnYkm0. (15)

Each Yk,m,n is simultaneously a k-eigenmode of the Laplacian and an n-eigenmode of Z.
The modes {Yk,m,n}n=−k/2···k/2 , being eigenmodes with different eigenvalues, are linearly

independent [12]. Conclusion: each Y�m generates, via the lift from S2 to S3 (sections 2.3 and
3.2) and the twist operators, a (k + 1)-dimensional vector space Vkm· of k-modes, with basis
{Yk,m,n}n=−k/2···k/2 (see table 1). Thus the 2� + 1 = k + 1 spherical harmonics Y�m generate the
complete vector space of k-eigenmodes of S3,

Vk =
⊕

m

Vkm·,

with basis {Yk,m,n}m=−k/2···k/2,n=−k/2···k/2, and thus of dimension (k + 1)2.

Proposition 3.4.1. Yk,m,n = Yk,−m,−n.

Proof. Each Yk,+m,0 is conjugate to the corresponding Yk,−m,0 because they are lifts of the
standard two-dimensional spherical harmonics Y�,+m and Y�,−m which have this symmetry.
The twist operators (14) are complex conjugates of one another by construction. Therefore
when n � 0,

Yk,m,n = twistnYk,m,0 = twist nYk,−m,0 = Yk,−m,−n, (16)

and similarly when n � 0. �

Proposition 3.4.2. By choosing complex-conjugate coefficients ck,m,n = ck,−m,−n one may
recover the real-valued modes of S3 as

ckmnYk,m,n + ckmnYk,−m,−n. (17)

In particular, whenever m and n are not both zero, the modes

Yk,m,n + Yk,−m,−n (18)

iYk,m,n − iYk,−m,−n (19)

are independent real-valued modes, analogous to cosine and sine, respectively.

Proof. The mode (17) is its own complex conjugate,

ckmnYk,m,n + ckmnYk,−m,−n = ckmnYk,m,n + ckmnYk,−m,−n (20)

and therefore real. �

7
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Table 1. Each �-eigenmode Y�,m of S2 (i.e. each spherical harmonic; middle column, lower entries)
lifts via the Hopf map (⇑) to a 0-twist k-eigenmode Yk,m,0 of S3 (middle column, upper entries),
with k = 2�. The positive twist operator (→) then takes Yk,m,0 to its k

2 positively twisted siblings
(right side) while the negative twist operator (←) takes Yk,m,0 to its k

2 negatively twisted siblings
(left side), for a total of (k + 1)2 linearly independent modes.

Yk,+�,−k/2 ← · · · ← Yk,+�,−1 ← Yk,+�,0 → Yk,+�,+1 → · · · → Yk,+�,+k/2

⇑
Y�,+�

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

Yk,+1,−k/2 ← · · · ← Yk,+1,−1 ← Yk,+1,0 → Yk,+1,+1 → · · · → Yk,+1,+k/2

⇑
Y�,+1

Yk,0,−k/2 ← · · · ← Yk,0,−1 ← Yk,0,0 → Yk,0,+1 → · · · → Yk,0,+k/2

⇑
Y�,0

Yk,−1,−k/2 ← · · · ← Yk,−1,−1 ← Yk,−1,0 → Yk,−1,+1 → · · · → Yk,−1,+k/2

⇑
Y�,−1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

Yk,−�,−k/2 ← · · · ← Yk,−�,−1 ← Yk,−�,0 → Yk,−�,+1 → · · · → Yk,−�,+k/2

⇑
Y�,−�

Convention 3.4.3. For the remainder of this paper we will assume that all coefficients are
chosen in complex-conjugate pairs ck,m,n = ck,−m,−n and therefore all modes are real valued.

4. Eigenmodes of spherical spaces S3/Γ∗

A spherical space is a quotient manifold M = S3/G, with G a finite subgroup of SO(4). An
eigenmode of M with eigenvalue k(k + 2) corresponds naturally to a k-eigenmode of S3 that
is G-invariant. The set of all such modes forms a subspace Vk

M of the vector space Vk of all
k-eigenmodes of S3. In the present paper we focus on the case that G is a binary polyhedral
group �∗, because those spaces hold the greatest interest for cosmology as well as being
technically easier.

4.1. Vertical modes of S3/�∗ generate all modes of S3/�∗

We will now show that when searching for �∗-invariant eigenmodes, we may safely restrict
our attention to the vertical ones.

Proposition 4.1.1. Every �∗-invariant mode of S3 may be obtained from vertical �∗-invariant
modes by applying the twist operators and taking a sum.

8
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Proof. Let F be an arbitrary �∗-invariant mode of S3 (not necessarily vertical). Express F
relative to the basis Ykmn (table 1) as

F =
∑
kmn

ckmnYkmn =
∑
kn

(∑
m

ckmnYkmn

)
=

∑
kn

Fkn, (21)

where Fkn ≡ ∑
m ckmnYkmn is the component of F that is simultaneously a k-eigenvalue of the

Laplace operator �S3 and an n-eigenvalue of the twist-measuring operator Z (equation (13)).
By assumption each element γ ∈ �∗ preserves F. Because γ commutes with both �S3 and Z,
it must preserve each Fkn individually. (Unlike an arbitrary element of SO(4), the isometry
γ commutes with Z because γ takes Clifford parallels to Clifford parallels.) Thus each Fkn is
�∗-invariant.

Because Fkn has constant twist, it is easily obtained by applying the twist operator to a
vertical function,

Fkn =
∑
m

ckmnYkmn =
∑
m

ckmntwistnYkm0 = twistn
(∑

m

ckmnYkm0

)
, (22)

where for negative n, twistn means twist|n|. Because the twist operators twist and twist
commute with each γ , each vertical function

∑
m ckmnYkm0 is �∗-invariant, thus completing

the proof. �

Like for S3, the search for the eigenmodes of S3/�∗ reduces to a search for the vertical
ones, since each vertical �∗-invariant k-eigenmode generates, through the action of the twist
operators, a (k + 1)-dimensional vector space of generic �∗-invariant k-eigenmodes.

4.2. Modes of S2/� generate all vertical modes of S3/�∗

Section 3.2 showed that the vertical modes of S3 are the pullbacks of the modes of S. Thus in
a direct geometrical sense, the modes of S2 are the vertical modes of S3, and �∗-invariance
on S3 corresponds directly to �-invariance on S2.

Conclusion 4.2.1. The search for �∗-invariant eigenmodes of S3 reduces to the search for
�-invariant eigenmodes of S2.

5. Γ-invariant eigenmodes of S2

5.1. Multipole vectors

Consider V �, the vector space of �-eigenmodes. According to Maxwell’s multipole vector
decomposition of modes [13, 14, 16, 17, 19, 21, 25], we may write each eigenmode f� ∈ V �

as

f�(x, y, z) = cr2�+1∇v�
· · · ∇v2∇v1

1

r
, (23)

where r =
√

x2 + y2 + z2 and the decomposition is well defined up to flipping the signs of the
direction vectors {v1, . . . , v�} and the scale factor, two at a time. The ordering of the direction
vectors is irrelevant.

Define an equivalence relation on V � setting two functions f and f ′ to be equivalent
whenever they are nonzero real multiples of each other,

f � f ′ ⇔ f = cf ′, c ∈ R − {0}.
9
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(a) (b) (c)

Figure 2. How to construct the *235 orbifold. (a) Begin with an icosahedrally symmetric pattern
on the 2-sphere. (b) Locate all lines of mirror symmetry. Each is a great circle, and together
they divide the sphere into 120 congruent triangles. (c) Fold the sphere along all mirror lines
simultaneously, so that the whole sphere maps 120-to-1 onto a single triangle. The resulting
quotient is the *235 orbifold. The Conway notation *235 may be understood as follows: the ‘*’
denotes the mirror-symmetric origin of the triangle’s sides, while the 2, the 3 and the 5 denote the
fact that 2, 3 and 5 mirror lines met at each corner, respectively.

All the elements of each equivalence class [f ] share the same decomposition (23) up to the
choice of signs for the direction vectors {v1, . . . , v�} and the leading constant c. Therefore
each equivalence class [f ] is uniquely represented by a set of directions {d1, . . . , d�},
where each direction di represents a line ±vi , with no concern for the sign. The set of
all possible directions forms a real projective plane RP 2 = S2/±Id .

5.2. Invariant sets of directions

A class [f ] of modes is �-invariant iff the associated set {d1, . . . , d�} is �-invariant. Note that
although each symmetry γ ∈ � is nominally a map γ : S2 → S2, its action on RP 2 is well
defined. To understand the possible classes [f ] of �-invariant modes, we need to understand
the possible �-invariant sets {d1, . . . , d�} of directions.

6. Eigenmodes of the Poincaré dodecahedral space S3/I∗

Let us now further restrict our attention to the PDS, because of the interest it holds in cosmology
as well as its greater technical ease. In other words, let � be the icosahedral group I comprising
the 60 orientation-preserving symmetries of a regular icosahedron. We will consider sets of
directions {d1, . . . , d�} that are invariant under I. Because each direction di is automatically
invariant under the antipodal map, the set {d1, . . . , d�} will be invariant under the full group
Ih of 120 symmetries of a regular icosahedron, reflections included.

6.1. The orbifold

The quotient S2/Ih is an orbifold consisting of a spherical triangle with mirror boundaries
and corner reflectors with angles π/2, π/3 and π/5 (see figure 2). In Conway’s notation this
orbifold is denoted *235.

• Each point in the interior of the triangle lifts to an invariant set of 120 points on S2, which
in turn defines an invariant set of 60 directions.

10
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• However, each point on a mirror boundary lifts to only 60 points on S2, defining only 30
directions. For this reason it is convenient to think of a point on the mirror boundary as a
‘half point’.

• A point at the corner reflector of angle π/2 lifts to 30 points on S2 or 15 directions, so it
is convenient to think of it as a ‘quarter point’.

• Similarly, the points at the corner reflectors of angle π/3 and π/5 may be considered a
1/6 point and a 1/10 point, respectively.

In all cases, a 1
F

fractional (F = 1, 2, 4, 6 or 10) point of S2/Ih represents an invariant set
of � = 60

F
directions. Another way to think about it is that a half point on the mirror boundary

lifts to 120 half points on S2, and then each pair of identically positioned half points combines
to form a single full point, and similarly for the other fractional points.

Definition 6.1.1. Let
C 1

10
denote the number of 1

10 points at the vertex of angle π/5,

C 1
6

denote the number of 1
6 points at the vertex of angle π/3,

C 1
4

denote the number of 1
4 points at the vertex of angle π/2,

C 1
2

denote the number of half points on the triangle’s perimeter, and
C1 denote the number of whole points in the triangle’s interior.

The preceding discussion has shown that

Proposition 6.1.2. Each I-invariant equivalence class [f ] of modes of S2 corresponds to a
unique choice of �I -invariant multipole vectors. The degree of a representative mode f is

� = 6C 1
10

+ 10C 1
6

+ 15C 1
4

+ 30C 1
2

+ 60C1. (24)

Some care is required here: knowing that an equivalence class [f ] of modes is I-invariant
does not immediately imply that each representative f of that class is I-invariant. It is a priori
possible that some symmetry γ ∈ I could send f to −f . The following proposition shows
that this does not happen.

Proposition 6.1.3. If an equivalence class [f ] of modes of S2 is invariant under the icosahedral
group I, then each representative f is also invariant under I.

Proof. Let {d1, . . . , d�} be the set of I-invariant directions defining the class [f ] (section 5.2),
and let γ ∈ I be a symmetry of the icosahedron. By the assumed I-invariance of [f ], we
know that γ sends each di to ±dj (for some j ). To prove that f itself is invariant, it suffices
to prove that γ sends di to −dj (rather than to +dj ) for an even number of di .

First, consider the case that a given di lies in the ‘interior’ of the *235-orbifold
(figure 2(c)). This implies that 59 other di (for different values of i) lie in the interiors
of other copies of the fundamental triangle (figure 2(b)), arranged symmetrically. Each
right-handed copy of the fundamental triangle lies antipodally opposite a left-handed copy
(figure 2(b)). If we make the convention to orient each of the 60 di in question so that it points
toward a right-handed copy of the triangle and away from a left-handed copy, then every γ ∈ I

will preserve those di exactly, always sending a di to a +dj , never to a −dj .
Next, consider the case that some di lies on the perimeter (the mirror boundary) of the

*235-orbifold’s fundamental triangle. In this case it has only 30 translates under the group
(including itself). The icosahedral group I consists entirely of rotations, each about some
vertex of the tiling (figure 2(b)). Let γ be some such rotation. In the generic case that none
of the 30 di lies exactly 90◦ from the rotation axis of γ , we may orient all 30 di to point

11
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toward the ‘northern hemisphere’ (relative to γ ’s rotation axis) and away from the ‘southern
hemisphere’. In this case γ sends each di to a +dj , never to a −dj . In the non-generic case
that some of the di lie exactly on the ‘equator’ relative to γ ’s rotation axis, consider the three
sub-cases that the rotation γ has order 2, 3 or 5. When γ is a rotation of order 3 or 5, easy ad
hoc conventions serve to orient the equatorial di so that γ respects their orientations. When γ

is a rotation of order 2, it perforce takes each di to −di , but there are exactly two such di , so
the net effect is still that γ maps the mode f to +f , not −f .

Finally, consider the case that some di lies isolated at one of the fundamental triangle’s
vertices. According to whether the vertex is a corner reflector of order 2, 3 or 5, di will have
15, 10 or 6 translates (including itself), respectively. Imitating the method of the preceding
paragraph, we consider a rotation γ ∈ I , and wherever possible orient the di to point toward the
northern hemisphere and away from the southern hemisphere, thus ensuring that γ permutes
such di respecting orientation. It remains to consider only the di that lie on the equator
relative to γ ’s rotation axis. When γ has order 3 or 5, its equator contains corner reflectors of
order 2 only, and an ad hoc convention serves to orient them consistently. When γ has order 2,
it maps each equatorial di to −di , but the equator contains exactly four corner reflectors of
order 2, four corner reflectors of order 3 and four corner reflectors of order 5, so in each
sub-case the equator contains exactly two of the directions di (from among the complete set
of 15, 10 or 6 directions under consideration), and because exactly two directions get flipped,
we conclude that γ maps the mode f to +f , not −f . �

Corollary 6.1.4. Any value of � not expressible in the form (24), for example � = 14, cannot
be the degree of an eigenmode of S2/I .

Corollary 6.1.5. The nontrivial I-invariant mode of S2 of least degree has degree l = 6.

6.2. Dimension of the space of modes

Proposition 6.2.1. The I-invariant mode of degree l = 6 is unique up to a constant multiple.
Thus dim(V 6) = 1.

Proof. To construct this mode, take the *235 orbifold and place a single 1/10 point at the
corner reflector of angle π/5. This 1/10 point lifts to 12 points of S2 which in turn define six
directions. According to Maxwell’s formula (23), those six directions define an I-invariant
class of modes [f ] of degree 6. By proposition 6.1.3, each representative f of [f ] is I-
invariant. Assuming a fixed realization of the icosahedral group I, the six directions are well
defined—they align with the vertices of an icosahedron or the face centers of a dodecahedron.
Therefore the class [f ] is also well defined, and the only degree of freedom for the mode f is
the scale factor inherent in the equivalence class [f ]. Thus V 6 is of dimension 1. �

The method of the preceding proposition lets us construct I-invariant modes of degree 10
(place a 1/6 point at the corner reflector of angle π/3) and degree 15 (place a 1/4 point at the
corner reflector of angle π/2), while proving that I-invariant modes of most other low degrees
cannot exist. V 10 and V 15 have dimension 1.

The case of degree 30, realized by placing a half point on the *235 orbifold’s mirror
boundary, is more interesting because we have an extra degree of freedom corresponding
to where we choose to place the half point. Allowing for the scale factor inherent in the
equivalence class [f ] gives a total of two real degrees of freedom: V 30 has dimension 2.

The case of degree 60, corresponding to one full point in the *235 orbifold, is more
interesting still, because now we have a choice as to how we realize that one full point:

12
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• Case 1. We may place a single full point anywhere in the orbifold.
• Case 2. We may place two half points on the orbifold’s mirror boundary. In the special

case that the two half points coincide, we get a single full point as in case 1.
• Case 3. We may place any combination of fractional points at the orbifold’s corner

reflectors, just so the fractions sum to one. However it turns out that the only ways to do
this are to place a full point at a single corner (for example realized as ten 1/10 points
at the corner of angle π/5) or to place a half point at each of two corners (for example
realized as five 1/10 points at the corner of angle π/5 plus three 1/6 points at the corner
of angle π/3). The full point corresponds to case 1 while the two half points correspond
to case 2, so nothing new arises here and we will henceforth ignore this case 3.

• Case 4. We may place a half point on the mirror boundary and a half-point’s worth of
fractional points at the corner reflectors, but as in case 3 nothing new arises here so we
may ignore this possibility.

Proposition 6.2.2. The I-invariant classes [f ] of modes of S2 of degree l = 60 are
parameterized by a real projective plane.

Proof. Each class [f ] of degree 60 corresponds to 60 directions {d1, . . . , d60} that are invariant
under the icosahedral group I, which in turn correspond either to a single point in the *235
orbifold (case 1) or to a pair of half points on the mirror boundary (case 2).

The possible locations for a whole point are obviously parameterized by the points of the
orbifold itself, which is topologically a disk.

The possible locations for a pair of points on the orbifold’s mirror boundary are
parameterized by a Möbius strip. To see why, first note that the mirror boundary is topologically
a circle S1. Parameterize this circle in some arbitrary but fixed way, with the parameter angle
defined modulo 2π , and then for any pair of points define

• θ = the position of the two points’ ‘center of mass’ (θ ∈ S1 = R/2π).
• φ = the separation between the two points (φ ∈ [0, π ]).

At first glance this gives a cylinder parameterized by (θ, φ). But (θ, π) and (θ + π, π)

define the same pair of points, so we must identify opposite points on the cylinder’s upper
boundary circle (θ, π) ∼ (θ + π, π), which transforms the cylinder into a Möbius strip. The
cylinder’s lower boundary circle (θ, 0) becomes the Möbius strip’s edge.

The Möbius strip’s edge, parameterized by (θ, 0), corresponds to the case that the two half
points fuse together to form a single whole point on the triangle’s perimeter. This corresponds
exactly to the boundary of the disk in the whole point parameter space. In other words, the
total parameter space is the union of a disk and a Möbius strip glued together along their
boundary circles, which yields a real projective plane. �

It is no surprise that the parameter space is a real projective plane. The space of �-invariant
harmonic functions f on S2 of any fixed degree � is a vector space of some finite dimension
n. When we pass from functions f to equivalence classes [f ] we identify each line through
the origin to a single point, giving in all cases a real projective space RP n−1. In the case just
considered, with degree � = 60, we found the projective space to be RP 2 meaning the total
function space, including the scale factor, is R

3.
To construct a generic I-invariant mode, we may place any combination of whole points

(anywhere in the orbifold), half points (on the orbifold’s mirror boundary) and other fractional
points (isolated at the orbifold’s corner reflectors). Each whole point contributes two degrees of
freedom to the space of modes (corresponding to the point’s location in the two-dimensional
triangle), each half point contributes one degree of freedom (corresponding to its location

13



J. Phys. A: Math. Theor. 41 (2008) 295209 M Lachiéze-Rey and J Weeks

along the triangle’s one-dimensional perimeter), and each isolated fractional point contributes
nothing. The overall scaling factor contributes one more degree of freedom for any nontrivial
mode. In summary,

Proposition 6.2.3. The dimension of the space of I-invariant �-eigenmodes of S2 is given by

dim(V �) = 1 + C 1
2

+ 2C1. (25)

Note that no matter how many half points may or may not combine into whole points, the
half and whole points together contribute C 1

2
+ 2C1 degrees of freedom.

6.3. Improved dimension formula

The dimension formula (25) is nice, but we would much rather have a formula in terms of �,
to save us the trouble of manually decomposing � into a linear combination of the Ci . Here is
the improved formula.

Proposition 6.3.1. The dimension of the space of I-invariant �-eigenmodes of S2 is given by

dim(V �) = 1 +

⌊
�

2

⌋
+

⌊
�

3

⌋
+

⌊
�

5

⌋
− �. (26)

Proof. Recall that

� = 6C 1
10

+ 10C 1
6

+ 15C 1
4

+ 30C 1
2

+ 60C1. (27)

and consider how the Ci depend on �.
First consider C 1

10
, the number of 1

10 points. Taking equation (27) modulo 5 we get

� ≡ C 1
10

(mod 5).

But the number of isolated 1
10 points may only be 0, 1, 2, 3 or 4, because if we had 5 or more

1
10 points they would combine to form half points and acquire an additional degree of freedom.
So the number of isolated 1

10 points must be C 1
10

= � − 5� �
5�. The same argument, repeated

mod 3 and mod 2, gives C 1
6

= � − 3� �
3� and C 1

4
= � − 2� �

2�, respectively.
Rearranging equation (27) now gives

C 1
2

+ 2C1 = 1

30
[� − 6C 1

10
− 10C 1

6
− 15C 1

4
]

= 1

30

[
� − 6

(
� − 5

⌊
�

5

⌋)
− 10

(
� − 3

⌊
�

3

⌋)
− 15

(
� − 2

⌊
�

2

⌋)]

=
⌊

�

5

⌋
+

⌊
�

3

⌋
+

⌊
�

2

⌋
− �. (28)

Substituting equation (28) into equation (25) gives the final result (26) as stated above. �

This agrees with Ikeda’s formula [5], while at the same time providing a concrete
construction of the modes and shedding additional light on the formula’s geometrical origins,
as degrees of freedom in an orbifold.
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7. Conclusion

Returning to the three-dimensional PDS S3/I ∗, the results of the preceding sections may be
summarized as follows. Keep in mind that S3/I ∗ admits k-modes for even k only; odd k-modes
cannot exist because I ∗ contains the antipodal map.

Theorem 7.1. To construct the modes of the PDS S3/I ∗,

• Each mode of S3/I ∗ corresponds to an I ∗-invariant mode of S3 (elementary).
• Each I ∗-invariant mode of S3 is a sum of twists of I ∗-invariant vertical modes of S3

(proposition 4.1.1).
• Each I ∗-invariant vertical k-mode of S3 is the pull-back, under the Hopf map, of an

I-invariant �-mode of S2, with k = 2� (proposition 3.2.1).
• The I-invariant �-modes of S2 are parameterized by �/60 points on the *235-orbifold,

possibly including fractional points (section 6.1).

Theorem 7.2. The space of k-modes of the PDS S3/I ∗ has the dimension

(k + 1)

(
1 +

⌊
k/2

2

⌋
+

⌊
k/2

3

⌋
+

⌊
k/2

5

⌋
− k

2

)
. (29)

Proof. The space of I-invariant k/2-modes of the 2-sphere has the dimension 1 +
⌊

k/2
2

⌋
+⌊

k/2
3

⌋
+

⌊
k/2
5

⌋− k
2 (proposition 6.3.1) and thus the space of vertical I ∗-invariant k-modes of the

3-sphere has this same dimension (theorem 7.1). The twist operators then take each vertical
mode to a (k+1)-dimensional space of generic I-invariant modes (table 1 and proposition 4.1.1),
completing the proof. �

References

[1] Aurich R 2008 A spatial correlation analysis for a toroidal universe Preprint arXiv:0803.2130v1
[2] Aurich R, Lustig S, Steiner F and Then H 2006 CMB alignment in multi-connected universes

http://arxiv.org/abs/astro-ph/0612308
[3] Bielewicz P and Riazuelo A 2008 The study of topology of the universe using multipole vectors Preprint

arXiv:0804.2437v1
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